Quantifying edge significance on maintaining global connectivity
نویسندگان
چکیده
Global connectivity is a quite important issue for networks. The failures of some key edges may lead to breakdown of the whole system. How to find them will provide a better understanding on system robustness. Based on topological information, we propose an approach named LE (link entropy) to quantify the edge significance on maintaining global connectivity. Then we compare the LE with the other six acknowledged indices on the edge significance: the edge betweenness centrality, degree product, bridgeness, diffusion importance, topological overlap and k-path edge centrality. Experimental results show that the LE approach outperforms in quantifying edge significance on maintaining global connectivity.
منابع مشابه
On the edge-connectivity of C_4-free graphs
Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...
متن کاملA note on connectivity and lambda-modified Wiener index
In theoretical chemistry, -modified Wiener index is a graph invariant topological index to analyze the chemical properties of molecular structure. In this note, we determine the minimum -modified Wiener index of graph with fixed connectivity or edge-connectivity. Our results also present the sufficient and necessary condition for reaching the lower bound.
متن کاملSufficient conditions for maximally edge-connected and super-edge-connected
Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...
متن کاملSufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs
Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree and its in-degree . Now let D be a digraph with minimum degree and edge-connectivity If is real number, then the zeroth-order general Randic index is defined by . A digraph is maximally edge-connected if . In this paper we present sufficient condi...
متن کاملOn Second Atom-Bond Connectivity Index
The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G) uvE (G ) (du dv 2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.
متن کامل